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ABSTRACT

Various methods have been proposed for detecting the onset times
of musical notes in audio signals. We examine recent work on on-
set detection using spectral features such as the magnitude, phase
and complex domain representations, and propose improvements
to these methods: a weighted phase deviation function and a half-
wave rectified complex difference. These new algorithms are com-
pared with several state-of-the-art algorithms from the literature,
and these are tested using a standard data set of short excerpts from
a range of instruments (1060 onsets), plus a much larger data set
of piano music (106054 onsets). Some of the results contradict
previously published results and suggest that a similarly high level
of performance can be obtained with a magnitude-based (spectral
flux), a phase-based (weighted phase deviation) or a complex do-
main (complex difference) onset detection function.

1. INTRODUCTION

Many music signal analysis applications require the accurate de-
tection of onsets of musical tones, and it is not surprising that sev-
eral different methods have been proposed for performing onset
detection. At first sight, onset detection is a well-defined task: the
aim is to find the starting time of each musical note (where a musi-
cal note is not restricted to those having a clear pitch or harmonic
partials). However, in polyphonic music, where nominally simul-
taneous notes (chords) might be spread over tens of milliseconds,
the definition of onsets starts to become blurred. Likewise, instru-
ments with long attack times (e.g. flute) produce notes for which
it is difficult to define an unambiguous and precise onset time.

The most natural way to approach this problem is to attempt
to define onset times in line with human perception, for exam-
ple using the work of Vos and Rasch [1], who distinguished be-
tween the physical and perceptual onset times of musical tones,
and showed that the perceptual onset time occurs when the tone
reaches a level of approximately 6 – 15 dB below its maximum
value. However, their research did not deal with the type of sit-
uations faced in analysing audio recordings of complex musical
works, where factors such as masking, temporal order thresholds
and just noticeable differences lay to rest any hope of a crisp defi-
nition of onset for real-world data.

In this paper, we take a more pragmatic approach to onset
detection, allowing the available data sets to guide the definition
of onsets, sometimes corresponding to perceived onset times, and
sometimes to physical onset times. The bulk of the first data set
is hand-labelled, that is, listeners have marked the positions in the
audio file at which they perceive onsets. If multiple listeners are
used for each file, a reasonably robust data set can be developed,
but this involves much work, so only small data sets can be pro-
duced in this way. The remaining data is collected from computer-
monitored pianos, which are able to measure the physical onset
times of notes with a high degree of accuracy. Since it is not fea-

sible for listeners to annotate the perceived onsets of all 106054
notes in this collection of piano sonatas, this is a method by which
large data sets can be quickly collected. The only drawback is the
disparity between physical and perceptual onset times (assuming
that the goal is to find perceived onsets). In the case of percussive
instruments, the difference is of the order of a few milliseconds,
which is sufficiently precise for our purposes, and at least as accu-
rate as human-labelled data.

In a recent tutorial article, Bello et al. [2] reviewed a number
of onset detection algorithms, making a theoretical and empirical
comparison of several state-of-the-art approaches. In this paper,
we complement and extend their work by introducing new onset
detection functions based on their work, and by testing the new
methods alongside independent implementations of a subset of the
published methods on the same data set and on a second data set
which is two orders of magnitude larger. Other comparisons of
onset detection methods can be found in [3, 4]. We restrict our
comparison to methods based on short term spectral coefficients,
which are the most widely used methods, and the most successful
according to the 2005 MIREX audio onset detection evaluation
[4].

In the next section, we introduce onset detection functions, re-
view three state-of-the-art functions as presented in [2, 5], and de-
scribe three new functions which are extensions of the published
algorithms. Section 3 addresses the evaluation of these onset de-
tection functions, starting with methodological concerns, then de-
scribing the test data and finally presenting and discussing the re-
sults of the tests. The final section contains the conclusions and
some ideas for further work.

2. ONSET DETECTION FUNCTIONS

An onset detection function is a function whose peaks are intended
to coincide with the times of note onsets. Onset detection functions
usually have a low sampling rate (e.g. 100Hz) compared to audio
signals; thus they achieve a high level of data reduction whilst pre-
serving the necessary information about onsets. Most onset detec-
tion functions are based on the idea of detecting changes in one
or more properties of the audio signal. But audio signals, whether
composed of natural or synthetic sounds, are in a continual state
of change, so the task of onset detection also involves distinguish-
ing between the various types of change, such as onsets, offsets,
vibrato, amplitude modulation and noise.

If an audio signal is observed in the time-frequency plane, the
onset of a new sound has noticeable energy in the frequency bands
in which the sound is not masked by other simultaneous compo-
nents. Thus an increase in energy (or amplitude) within some fre-
quency band(s) is a simple indicator of an onset. Alternatively, if
we consider the phase of the signal in various frequency bands, it
is unlikely that the frequency components of the new sound are in
phase with previous sounds, so irregularities in the phase of var-
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ious frequency components can also indicate the presence of an
onset. Further, the phase and energy (or magnitude) can be com-
bined in various ways to produce more complex onset detection
functions. This is the basis of the onset detection functions pre-
sented in this section.

The next 3 subsections briefly review existing approaches to
onset detection using spectral flux, phase deviation and complex
domain methods (for a more in depth review, see [2]). Then we
present potential improvements to these methods, defining weighted
phase deviation, normalised weighted phase deviation and half-
wave rectified complex domain onset detection functions. All of
these methods make use of a time-frequency representation of the
signal based on a short time Fourier transform using a Hamming
windoww(m), and calculated at a frame rate of 100 Hz. IfX(n, k)
represents the kth frequency bin of the nth frame, then:

X(n, k) =

N
2 −1X

m=−N
2

x(hn+m) w(m) e−
2jπmk

N

where the window size N = 2048 (46 ms at a sampling rate of
r = 44100 Hz) and hop size h = 441 (10 ms, or 78.5% overlap).

2.1. Spectral Flux

Spectral flux measures the change in magnitude in each frequency
bin, and if this is restricted to the positive changes and summed
across all frequency bins, it gives the onset function SF [6]:

SF (n) =

N
2 −1X

k=−N
2

H(|X(n, k)| − |X(n− 1, k)|)

whereH(x) = x+|x|
2

is the half-wave rectifier function. Empirical
tests favoured the use of the L1-norm here over the L2-norm used
in [7, 2], and the linear magnitude over the logarithmic (relative or
normalised) function proposed by Klapuri [8].

2.2. Phase Deviation

The rate of change of phase in an STFT frequency bin is an esti-
mate of the instantaneous frequency of that component. This can
be calculated via the first difference of the phase of X(n, k). Let
ψ(n, k) be the phase of X(n, k), that is:

X(n, k) = |X(n, k)| ejψ(n,k)

where −π < ψ(n, k) ≤ π. Then the instantaneous frequency is
given by the first difference ψ′(n, k):

ψ′(n, k) = ψ(n, k)− ψ(n− 1, k)

mapped onto the range (−π, π]. The change in instantaneous fre-
quency, which is an indicator of a possible onset, is given by the
second difference of the phase:

ψ′′(n, k) = ψ′(n, k)− ψ′(n− 1, k)

which is also mapped onto the range (−π, π]. Large discontinu-
ities in the unwrapped phase or its derivatives can wrap around to
0, but the onset detection function based on phase deviation, PD ,
takes the mean of the absolute changes in instantaneous frequency
across all bins [9, 2], which reduces the chance of a missed detec-
tion:

PD(n) =
1

N

N
2 −1X

k=−N
2

|ψ′′(n, k)|

2.3. Complex Domain

Amplitude and phase can be considered jointly to search for de-
partures from steady-state behaviour by calculating the expected
amplitude and phase of the current bin X(n, k), based on the pre-
vious two bins X(n − 1, k) and X(n − 2, k). The target value
XT (n, k) is estimated by assuming constant amplitude and rate of
phase change:

XT (n, k) = |X(n− 1, k)| eψ(n−1,k)+ψ′(n−1,k)

and therefore a complex domain onset detection function CD can
be defined as the sum of absolute deviations from the target values:

CD(n) =

N
2 −1X

k=−N
2

|X(n, k)−XT (n, k)|

This formulation is simpler but equivalent to the complex domain
detection function in [2, 5].

2.4. Weighted Phase Deviation

In the remainder of this section we propose improvements to the
onset detection functions described in the literature. The first idea
addresses the problem that the PD function “is susceptible ... to
noise introduced by components with no significant energy” [2].
That is, the function considers all frequency bins k equally, al-
though the energy of the signal is concentrated within the bins
containing the partials of the currently sounding tones. We pro-
pose weighting the frequency bins by their magnitude, giving a
new onset detection function which we call the weighted phase
deviation (WPD):

WPD(n) =
1

N

N
2 −1X

k=−N
2

|X(n, k) ψ′′(n, k)|

This is similar to the CD function, in that the magnitude and phase
are considered jointly, but with a different manner of combination.
A further option is to define a normalised weighted phase deviation
(NWPD) function, where the sum of the weights is factored out
to give a weighted average phase deviation:

NWPD(n) =

P N
2 −1

k=−N
2
|X(n, k) ψ′′(n, k)|P N

2 −1

k=−N
2
|X(n, k)|

2.5. Rectified Complex Domain

One problem with the CD method is that it does not distinguish be-
tween increases and decreases in amplitude of the signal. Since it
is important to distinguish onsets from offsets, we propose using a
similar idea to that used in the SF function, where half-wave recti-
fication is used to preserve only the increases in energy in spectral
bins. This idea can easily be incorporated into the CD method,
giving a (half-wave) rectified complex domain (RCD) onset de-
tection function as follows:

RCD(n) =

N
2 −1X

k=−N
2

RCD(n, k)
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where

RCD(n, k) =

8><>:
|X(n, k)−XT (n, k)|, if|X(n, k)| ≥

|X(n− 1, k)|
0, otherwise

2.6. Onset Selection

The onsets are selected from the detection function by a peak-
picking algorithm which finds local maxima in the detection func-
tion, subject to various constraints. The thresholds and constraints
used in peak-picking have a large impact on the results, specifi-
cally on the ratio of false positives to false negatives. For example,
a higher threshold generally reduces the number of false positives
and increases the number of false negatives. The best values for
thresholds are dependent on the application and the relative un-
desirability of false positives and false negatives. It is difficult to
generate threshold values automatically, so we follow Bello et al.
[2] in reporting results for optimal parameter settings, which also
allows a fair comparison with their published results.

Peak picking is performed as follows: each onset detection
function f(n) is normalised to have a mean of 0 and standard de-
viation of 1. Then a peak at time t = nh

r
is selected as an onset if

it fulfils the following three conditions:

f(n) ≥ f(k) for all k such that n− w ≤ k ≤ n+ w

f(n) ≥
Pn+w
k=n−mw f(k)

mw + w + 1
+ δ

f(n) ≥ gα(n− 1)

where w = 3 is the size of the window used to find a local max-
imum, m = 3 is a multiplier so that the mean is calculated over
a larger range before the peak, δ is the threshold above the local
mean which an onset must reach, and gα(n) is a threshold function
with parameter α given by:

gα(n) = max(f(n), αgα(n− 1) + (1− α)f(n))

Experiments were performed with various values of the two
parameters δ and α, and it was found that best results were ob-
tained using both parameters, but the improvement in results due
to the use of the function gα(n) was marginal, assuming a suitable
value for δ is chosen.

3. EVALUATION OF ONSET DETECTION FUNCTIONS

In this section, we discuss our testing methodology, describe the
data sets, and present the results from testing the above onset de-
tection functions on each data set.

3.1. Methodology

The main difficulty with the evaluation of onset detection algo-
rithms is that of obtaining a significantly large and balanced set
of recordings for which the onset times are known (ground truth
data). Precise measurements of onset times are only available
for a small fraction of music, such as piano music recorded on
computer-monitored pianos, and music generated with a MIDI
synthesiser. Other data must be labelled by hand, which is a la-
borious and error-prone task. By balanced, we mean that the data
set should be representative of the full range of data that the system
is intended to be used for, including the proportions of pieces per
instrument, per style, per level of complexity, etc. If the test set

is not representative of real-world data, then the results reported
will be overly optimistic (or in some cases pessimistic) of the ac-
tual performance of the algorithm. Finally, the data set should be
large enough that separate training and test sets can be established
in order to avoid overfitting.

A second methodological problem is determining how to re-
port and compare results. Each onset detection function has pa-
rameters which can be tuned to alter the proportion of false pos-
itives (reported detections where no onset exists) and false nega-
tives (missed detections). These proportions are often expressed
in terms of precision and recall (defined below), but it is not suf-
ficient to report the precision and recall alone, that is, via one pair
of values. The relationship of precision to recall is often shown
graphically in a receiver operating characteristic (ROC) curve, and
if a single scalar statistic is desired (to make comparisons simple),
the the precision and recall can be combined into a single value
such as the the area under the ROC curve or the F-measure, which
represents the optimal point on the ROC curve.

A third problem is how to deal with situations where a num-
ber of onsets are very close together, for example when a chord is
played on a guitar or piano. Depending on the time between the
notes, one or more onsets might be perceived, but this is dependent
on the instrument and presence of other simultaneous sounds. The
MIREX 2005 [10] onset detection evaluation addressed this prob-
lem by counting the number of merged onsets (two onsets detected
as a single onset) and double onsets (a single onset recognised as
two) in addition to the standard counts of correct detections, false
positives and false negatives1.

In this work, we consider an onset to be correctly matched
if a detected onset is reported within 50 ms of the ground truth
onset time. We do not penalise merged onsets, since the data we
have contains many simultaneous or almost-simultaneous notes,
and we are not attempting to recognise the notes. The results are
summarised by three statistics: the precision P , recall R and F-
measure F (for the optimal parameter settings), which are given
by:

P =
c

c+ f+

R =
c

c+ f−

F =
2PR

P +R
=

2c

2c+ f+ + f−

where c is the number of correct detections, f+ is the number of
false positives and f− is the number of false negatives. Parameters
were chosen to maximise F ; for certain applications where false
positives and false negatives are not equally undesirable, different
parameter values would be more suitable. Further discussion of
onset detection evaluation can be found in [11].

3.2. Data

The first set of tests were performed on the data used by Bello et
al. [2], consisting of 4 sets of short excerpts from a range of in-
struments, classed into the following groups: NP — non-pitched
percussion, such as drums (119 onsets); PP — pitched percus-
sion, such as piano and guitar (577 onsets); PN — pitched non-
percussion, in this case solo violin (93 onsets); and CM — com-
plex mixtures from popular and jazz music (271 onsets). Although
there are only 1060 onsets in these sets of excerpts, they offer two
important advantages: to test the algorithms on a range of different

1http://www.music-ir.org/mirex2005/index.php/Audio Onset Detection

DAFX-135

http://www.music-ir.org/mirex2005/index.php/Audio_Onset_Detection


Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

instruments, and second, to enable a direct comparison with other
published work.

The second set of data contains about 4 hours of solo piano
music played by a professional pianist on a Bösendorfer computer-
monitored grand piano2. This data consists of 106054 notes —
two orders of magnitude more than that used in other evaluations
— and includes complex passages such as trills, fast scale passages
with pedal and arpeggiated chords. The level of complexity is such
that a human annotator would have immense difficulty marking all
the onsets precisely.

3.3. Results and Discussion

Table 1 shows the results for 8 different onset detection functions
tested on the 4 data sets used in [2]. In each case, the results are
shown for the point on the ROC curve which gives the maximum
value of the F-measure. That is, the ground-truth data was used
to select optimal values of δ and α. A similar approach was taken
in [2], so the comparison with the published results, which are
included in the table in the rows marked by asterisks (SF* and
PD*), is fair.

The first point to note is that there are some large discrepan-
cies between the published results and our own implementations of
the same functions. For example, SF* performs particularly well
with the data set PP in comparison with the PN and NP data sets,
but our implementation (SF) shows much smaller performance dif-
ferences across these 3 sets of excerpts. SF also achieves better
performance across the entire range of data, presumably due to a
better peak-picking function. Even greater differences are evident
in the results of the phase deviation functions, where our PD func-
tion achieved much worse performance than the published PD*
results. The closeness of the PD* results to the WPD and NWPD
results raised the suspicion that perhaps some weighting scheme
been used in the PD* algorithm, and this was later confirmed by
one of the authors, who had mistakenly thought it was an unim-
portant detail. It is noteworthy that relatively small differences in
implementation have a large impact on results, and that some of
the differences are specific to particular data sets. However, we
add two caveats: first, that parameter settings greatly influence the
results, and this could be the source of some of the differences,
and second, that the differences in performance are not necessarily
significant considering the size of the test sets.

The second point that we note from Table 1 is that the WPD
and NWPD are both very significant improvements on the PD
function, but the normalisation is only an improvement on the
WPD in two cases (PP and CM), while for the other two cases a
slight degradation in performance results. Finally, the RCD method
offers a small improvement on the CD on this data, but considering
the small size of the data set, this difference might not be signifi-
cant.

Overall, these results show that spectral flux, weighted phase
deviation and complex domain methods can all achieve a similarly
high level of performance on these data sets. Since the data sets
are small and not sufficiently general, we are not willing to draw
further conclusions about the differences between these methods,
except to state that spectral flux has the advantage of being the
simplest and fastest algorithm.

We now turn to the second set of results (shown in Table 2),
which comes from a much larger but more homogeneous set of
data, 13 complete piano sonatas by Mozart. Results were col-
lected using a single parameter set for each function, and then

2Sonatas K. 279–284, 330–333, 457, 475 and 533, from Wolfgang
Amadeus Mozart: The Complete Piano Sonatas, played by Roland Batik,
Gramola 98701–705, 1990.

P R F E (ms)
SF 0.958 0.969 0.964±0.017 8.8
PD 0.555 0.868 0.677±0.044 19.5
WPD 0.903 0.921 0.912±0.028 9.6
NWPD 0.945 0.944 0.944±0.021 10.3
CD 0.970 0.962 0.966±0.015 12.8
RCD 0.952 0.958 0.955±0.018 9.3

Table 2: Results for a database of complex piano music consisting
of 106054 onsets: the columns are precision (P), recall (R), F-
measure with standard deviation of F-measures across sonatas (F)
and average absolute error in ms (E).

summed across all sonatas, but the F-measure was also calculated
separately for each piece, to give an indication of the variation in
results. Since piano is a pitched percussion instrument, one would
expect the results to be similar to those shown in the PP columns
of Table 1, and this is basically true. The top 3 algorithms are
the same in both cases (SF, CD and RCD), with a range of less
than one standard deviation between them. The fact that their or-
der has changed does not appear to be significant. The remaining
algorithms preserved their ranking, with NWPD very close to the
third placed algorithm, WPD somewhat further behind, and PD
performing very poorly.

The results for the piano sonatas are overall lower than for the
PP data set. This would be expected, since the PP data set contains
relatively simple music, and most of the piano music does not even
use the damper pedal, so the likelihood of sustained tones mask-
ing new onsets is greatly reduced. Considering the difference in
complexity of the music, it is surprising that the drop in algorithm
performance is not greater; on the contrary, the results are very
encouraging.

Another factor that we can take into account with this data is
the errors in correctly detected onsets, which are summarised in the
right column of Table 2 as an average absolute value. If precision
of onset detection is important, the SF function has a slight advan-
tage over other methods. Such a comparison is not possible with
the hand-labelled data, since the timing errors in hand-labelling are
much greater than the errors we observe in Table 2.

One previous study involved the use of genetic algorithms to
learn an optimal set of parameters for combining various simple
onset detection functions [12]. Testing was performed on 10 of the
same piano sonatas, and the results were equivalent to an average
F-measure of 0.94 across different training sets, with an average
error of 11 ms. This is slightly worse than the best results achieved
here, and the detection window was greater (70 ms instead of 50
ms), which would give higher detection rates. Further, the system
had to be trained to learn a larger set of parameters than the one or
two parameters which were varied in this work.

4. CONCLUSIONS

We revisited a recent study on onset detection and proposed 3 new
onset detection functions and a new peak-picking algorithm as im-
provements on the published methods. Tests on a common data set
supported the claim that the new methods are better, but more ex-
tensive tests using a large set of piano music showed the spectral
flux and complex domain functions to be marginally better than
the weighted phase deviation functions. The test results contra-
dicted some findings in the literature, which probably indicates an
instability in the results with respect to small differences in imple-
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PN data PP data NP data CM data
P R F P R F P R F P R F

SF* 0.914 0.871 0.892 0.984 0.949 0.966 0.945 0.816 0.876 0.896 0.804 0.848
SF 0.938 0.968 0.952 0.981 0.988 0.984 0.959 0.975 0.967 0.882 0.882 0.882
PD* 0.957 0.957 0.957 0.997 0.955 0.976 0.945 0.807 0.871 0.753 0.801 0.776
PD 0.654 0.935 0.770 0.482 0.865 0.619 0.750 0.933 0.831 0.663 0.749 0.704
WPD 0.937 0.957 0.947 0.899 0.925 0.912 0.974 0.958 0.966 0.843 0.830 0.836
NWPD 0.909 0.968 0.938 0.961 0.981 0.971 0.950 0.966 0.958 0.916 0.845 0.879
CD 0.946 0.946 0.946 0.971 0.984 0.978 0.948 0.924 0.936 0.941 0.819 0.876
RCD 0.948 0.978 0.963 0.983 0.979 0.981 0.944 0.983 0.963 0.945 0.819 0.877

Table 1: Results of onset detection tests, showing precision (P), recall (R) and F-measure (F) for the data sets pitched non-percussive (PN),
pitched percussive (PP), non-pitched percussive (NP) and complex mixture (CM), for 8 different onset detection functions (see section 2).
The functions marked with asterisks are results in [2].

mentation details or parameter settings.
A large-scale evaluation was performed on a database of piano

music, and it was found that the differences in F-measure between
the best algorithms are not significant, implying that the choice
of algorithm could be based on other factors such as simplicity
of programming, speed of execution and accuracy of correct on-
sets (all of which speak for SF, the spectral flux onset detection
function). The results for the large-scale test were worse than
previously published results for pitched percussion instruments,
which were somewhat optimistic as they were based on simple
data. The present results are also optimistic, since the parameter
values were generated using feedback from the ground truth data,
and all recordings came from the same instrument and recording
conditions.

In future work, we will address the issue of automatic param-
eter estimation, with the aim of producing a fully automatic on-
set detection algorithm. (The MIREX 2005 audio onset detection
competition was won by a neural network which was trained to
detect onsets from spectral data [4].) We also intend to compare
these results with another recording of the same data on a differ-
ent piano with different recording conditions. Finally, an analysis
of errors will be performed to determine the extent to which the
methods fail at different points, so that by combining the methods
(e.g. by voting [13]) a more robust onset detection algorithm could
be developed.
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