Robust Design of Very High-Order Allpass Dispersion Filters

Jonathan S. Abel
abel@uaudio.com
Universal Audio, Inc.;
Stanford University

Julius O. Smith III
jos@ccrma.stanford.edu
CCRMA
Stanford University
Dispersive Propagation in a Spring Reverb

- The torsional mode typically used by spring reverberators is highly dispersive, giving the spring its characteristic sound.
Dispersive Waveguide

- Each spring element is modeled using a set of dispersive waveguide sections.
- Left-going and right-going waves are separately processed via delay elements and commuted dispersion and loss filters.
Allpass Dispersion Filter Design

\[G(z) = \frac{\rho_N + \rho_{N-1}z^{-1} + \cdots + \rho_1z^{-N+1} + z^{-N}}{1 + \rho_1z^{-1} + \cdots + \rho_{N-1}z^{-N+1} + \rho_Nz^{-N}} \]

- Hilbert transform methods
 - Yegnanarayana, IEEE-ASSP 1982
 - Reddy and Swamy, ICASSP 1998
 - Filter phase (not group delay) matched
 - Potential time aliasing, numerical issues; not in factored form

- Optimal filter design formulation
 - Lang and Laakso, IEEE-CAS1 1994; Lang, IEEE-SP 1998
 - Rocchesso and Scalcon, IEEE-CAS 1996
 - Bensa et al., ASA 2004
 - Rauhala and Valamaki, IEEE-SPL 2006
 - Maximum order limited by numerical difficulties; expensive design
First-Order Allpass Filter

\[G(z) = \frac{-\rho e^{-j\theta} + z^{-1}}{1 - \rho e^{-j\theta} \cdot z^{-1}} \]

\[\tau(\omega) = \frac{1 - \rho^2}{1 + \rho^2 - 2\rho \cos(\omega - \theta)} \]

transfer function

group delay
First-Order Allpass Group Delay

- As the pole is moved toward the unit circle, the first-order allpass group delay $\tau(\omega)$ becomes more peaked about the pole angle θ – the maximum increases, and the peak narrows.
First-Order Allpass Group Delay

- The integral of the group delay $\tau(\omega)$ of a first-order allpass filter is 2π, independent of ρ and θ,

$$
\int_{0}^{2\pi} \tau(\omega) d\omega = \varphi(2\pi) - \varphi(0) = 2\pi.
$$
Allpass Filter Design Approach

- Integrate \(\tau(\omega) \), and add a constant delay \(\tau_0 \) such that \(\pi(\omega) + \tau_0 \) integrates to a multiple of \(2\pi \).
- Divide \(\tau(\omega) + \tau_0 \) into \(2\pi \)-area frequency bands.
- Fit a first-order allpass filter section to each band.
First-Order Allpass Design

- The pole angle \(\theta \) is the band midpoint,
 \[\theta = (\omega_- + \omega_+) / 2 \]

- The section pole radius \(\rho \) is chosen to make the band edge group delay a fraction \(\beta \) of its maximum.

\[\rho = \eta - \left(\eta^2 - 1 \right)^{1/2} \]
\[\eta = \frac{1 - \beta \cos \delta}{1 - \beta} \]
\[\delta = (\omega_- - \omega_+) / 2 \]
Dispersion Filter Design Cost

- The design method is very inexpensive and may be used to update dispersion filters in real time.
 - The pole angles θ_k directly encode the dispersive delay $\tau(\omega)$, and may be efficiently computed.
 - The pole radii $\rho_k(\beta)$ control delay smoothing, and are roughly linear in section bandwidth.

\[\tau(\omega) \]

\[\rho \approx 1 - \left[\frac{\beta}{1 - \beta} \right]^{1/2} \delta, \quad \delta \ll 1 \]

\[\delta = \frac{1}{2} |\omega_+ - \omega_-| \]
Design Example: Spring Reverberator Element

- Poles, zeros follow smooth trajectories.
Adjusting β

Adjusting β trades ripple for responsiveness to narrow-band group delay changes.
Increasing Model Order

- Adding a constant delay τ_0 to the group delay $\tau(\omega)$ allows additional allpass sections to be used, and provides a more accurate fit.
Low-Frequency Modeling

- By setting $\tau(\omega) = 0$ outside the band of interest, the model order may be reduced.
Piano String Propagation Filter Design

\[\exp\left\{ -\alpha(\omega) \cdot d - j\left[\frac{\omega}{c_0} - \varphi(\omega) \right] \cdot d \right\} \]

 measured (-r) and modeled (-k) transfer function magnitude

 measured (-r) and modeled (-k) group delay, 64 biquads.

 measured (-r) and modeled (-k) impulse responses.

 transfer functions

 impulse responses
Stiff String Propagation Filter Design

\[\tau(\omega) = \frac{\tau_0}{\sqrt{1 + B\omega^2}} \]

\[\varphi(\omega) = \frac{\tau_0}{\sqrt{B}} \cdot \text{asinh}\sqrt{B\omega} \]
Summary

• New method for allpass dispersion-filter design:
 – Simple, numerically robust, nonparametric
 – Model order automatically determined
 – Filters produced in factored biquad form

• Future work
 – Applications
 • Strings, springs and tubes of all kinds
 • Filter group-delay equalization
 – Extensions
 • Multiband group-delay filter design
 • Time-varying group-delay design
 • Frequency-dependent smoothing parameter β